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Abstract

A new technique for proving timing properties for timing-based algorithms is described; it
is an extension of the mapping techniques previously used in proofs of safety properties for
asynchronous concurrent systems. The key to the method is a way o' epresenting a system
with timing constraints as an automaton whoso state includes predictive timing information.

Timing assumptions and timing requirements for the system are both represented in this way.
A multivalued mapping from the "assumptions automaton" to the "requirements automaton" is
then used to show that the given system satisfies the requireent,. The technique is illustrated
with two simple examples, a resource manager and a signal relay.

Keywords: Timing properties, timing-based algorithms, formal specification, formal verifica-
tion, assertional reasoning, possibilities mappings, timed automata, I/0 automata.

Aoceslon For

NTIS (RA&I

DTI(C TA I
I1U0u.W) : d 1/

Just I f loot I on

By
Di stribt.Vt oa/

AV- liabtl ty Codsa
A atl adjar

Dist 'SPvcLOA2



1 Introduction

Assertional reasoning is a very useful technique for proving safety properties of sequential and
concurrent algorithms. This proof method involves describing the algorithm of interest as a
state machine, and defining a predicate known as an assertion on the states of the machine.
One proves inductively that the assertion is true of all the states that are reachable in a
computation of the machine, i.e., that it is an invariant of the machine The assertion is
defined so that it implies the safety property to be proved.

One kind of assertional reasoning uses a mapping to describe a correspondence between
the given algorithm and a higher-level algorithm used as a specification of correctness. (See.
for example, [La83, Ly86, LT87].) Such mappings may be single-valued or multivalued.

So far, assertional reasoning has been used primarily to prove properties of sequential algo-
rithms and synchronous and asynchronous concurrent algorithms. It would also be nice to use
this technique to prove properties of concurrent algorithms whose operation depends on time,
e.g., algorithms that use clocks that tick at approximately predictable rates. Also, the kinds of
properties generally proved using assertional reasoning have been "ordinary" safety properties;
it would be nice to use similar methods to prove timing properties (upper and lower bounds
on time) for algorithms that have timing assumptions. For example, predictable performance
is often a desirable characteristic of real-time systems [SR89]; assertional techniques could be
very helpful in proving such performance properties.

In this paper, we describe one way in which assertional reasoning can be used to prove tim-
ing properties for algorithms that have timing assumptions. Our method involves constructing
a multivalued mapping from an automaton representing the given algorithm to another au-
tomaton representing the timing requirements. The key to our method is a way of representing
a system with timing constraints as an automaton whose state includes predictive timing in-
formation. Timing assumptions and timing requirements for the system are both represented
in this way, and the mappings we construct map from the "assumptions automaton" to the
"requirements automaton".

The formal model we use to describe our method is the timed automaton model, a slight
variant of the time constrained automaton model of [MMT88]. We use this model to state

the requirements to be satisfied, to define the basic architectural and timing assumptions,
to describe the algorithms, and to prove their correctness and timing properties. A timed
automaton is a pair (A,b), consisting of an I/O automaton [LT87, LT89], together with a
boundmap, which is a formal description of the timing assumptions for the components of the
system. We introduce the notion of a timing condition to state upper and lower bounds on
the difference between the times at which certain events or states appear in an execution: the
conditions imposed by a boundmap are timing conditions of a particular kind. An automaton
and a set of timing conditions, (in particular, a timed automaton) generates a set of timed
executions and a corresponding set of timed behaviors.

While convenient for specifying timing assumptions and requirements, timed automata are
not directly suited for carrying out assertional proofs about timing properties. because tim-



ing constraints are described by specially-defined timing conditions rather than being built
into the automaton itself. We therefore require a way of incorporating timing conditions into
an automaton definition. We do this by means of a general construction of an automaton
titne(A,14), for a given timed automaton 4, and a set U of timing conditionz. The automaton
time(A,U) is an ordinary I/O automaton (riot a timed automaton) whose state includes pre-
dictive information describing the first and last times at which various events can next occur:
this information is designed to enforce the timing conditions in U.

In the special case that 14 represents the conditions imposed by a boundmap b for A,
time(A,14) is the automaton timc(A) defined in [Atl,89]; this is de!,ted by tinze(A.b) in this
paper. The 1/O automaton timc(.-lb) is related to the timed automaton (A.b) in tha, a certain
subset of the behaviors of time( A, b), the "complete" behaviors, is exactlV equal to the set of
timed behaviors of (A, b).

The timing requirements to be proved for an algorithm described as a timed automaton,
(A,b), are described as a set of 6iming conditions, U4, for A. We define the requirements
automaton to be time(A,U). Thus, we build into the state of the requirements automaton
predictive information about the first and last times at which cert.in events of interest can

next occur.

The problem of showing that a given algorithm (A,b) satisfies the timing requirements
is then reduced to that of showing that any behavior of the automaton time(A.b) is also a
behavior of time(A,U). We do this by using invariant assertion techniques: in particular, we
demonstrate a multivalued mapping from time(A,b) to time(A,U).

In order to demonstrate the use of our technique, we apr)ly them to two simple examples.
The first example is a timing-dependent system consisting of two concurrently-operating com-
ponents, which we call a clock and a manager. The clock ticks at an approximately known
rate. The manager monitors the clock ticks, and after a certain number have occurred, it issues
a GRANT (of a resource). It then continues counting ticks; whenever sufficiently many have
occurred since the previous GRANT event, the manager issues another GRANT. We give
careful proofs of upper and lower bounds on the amount of time prior to the first GRANT
event and in bet ..een each successive pair of GRANT events.

The second example is an asynchronous (not timing-dependent) system consisting of a
"line" of processes. Each process waits to receive a SIGNAL from the process at its left and
then sends a SIGA f to the process at its right. We give careful proofs of upper and lower
bounds on the time to pr(,pagte a SIGNAL from the left end to the right end of the line.
Both of these examples are extremely simple: however, the ideas they embody also appear in

many more realistic examples.

The mappings we provide for both of these examples have a particularly interesting and
simple form a set of inequalities relating the time bounds to be proved to those that can be
computed from the state. These inequalities contain information about how the bounds are to
be satisfied.

Another interesting aspect of the second example is that the proof is carried out using a
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hierarchy of automata, rather than just a pair of automata; the given system is the lowest level.
and the requirements automaton is the highest level in the hierarchy. We define a mapping
for each level in the hierarchy; the composition of the entire collection of mappings is the
mapping needed to show correctness. The hierarchical proof is especially interesting because
its assertional reasoning corresponds closely to the more -operational" reasoning that might
be used in an alternative proof based on recurrences.

Technically, mapping techniques of the sort used in this paper are only capable of proving
safety properties, but not liveness properties. Timing properties have aspects of both safety
and liveness. A timing lower bound asserts that an event cannot occur before a certain amount
of time has elapsed; a violation of this property is detectable after a finite prefix of a timed
execution, and so a timing lower bound can be regarded as a safety property. A timing upper
bound asserts that an event must occur before a certain amount of time has elapsed. This
can be regarded as making two separate claims: that the designated amount of time does in
fact elap.e (a iveneg property), and that that time cannot elapse without the event having
occurred (a safety property). In this paper, we assume the liveness property that time increases
without bound, so that all the remaining properties that need to be proved in order to prove
either upper or lower time bounds are safety properties. Thus, our mapping technique provides
complete proofs for timing properties without requiring any special techniques (e.g., variant
functions or temporal logic methods) for arguing liveness.

There has been some prior work on using assertional reasoning to prove timing properties.
In particular, Haase [1181], Shankar and Lam [SL87], Tel [T88], Schneider [S88], Lewis [H89]
and Shaw [S89] have all developed models for timing-based systems that incorporate time
information into the state, and have used invariant assertions to prove timing properties. In
[T88] and [H89], in fact, the information that is included is similar to ours in that it is also
predictive timing information (but not exactly the same information as ours). None of this
work has been based on mappings, however.

Several other, quite different formal approaches to proving timing properties have also been
developed. Some representative papers describing these other methods are [BH81], [KVR83].
[JM87], [Ho87], [Zw88], [JS88], and [GF88].

The rest of the paper is organized as follows. Section 2 contains a description of the un-
derlying formal models: I/O automata, timed automata and timing conditions. Section 3
contains the general construction used to produce the time(A,U) automata, and some prop-
erties of these automata. Section 4 contains our first example, a simple resource-granting
manager using a clock; the section contains a description of the algorithm, a description of the
corresponding requirements automaton, and a correctness proof. Section 5 contains a similar
treatment for our second example - a simple signal propagation system. We conclude with a
discussion in Section 6. Some of the more technical proofs are relegated to an Appendix.
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2 Formal Model

In this section, we present the definitions for the underlying formal model. In particular, we

define I/O automata, timed automata and timing conditions. We also present somp of their

relevant properties.

2.1 I/O Automata

We begin by summarizing some of the key definitions for the I/O automaton model. We refer

the reader to [LT87. LT89] for a complete presentation of th- model and its properties.

An I/0 automaton consists of the following components: acts(A), a set of actions. classified
as output. input and internal (input and output actions are called external); states(A). a set of

states, including a distinguished subset, start(A), of start states: steps(A), a set of steps, where

a step is defined to be a (state, action, state) triple; and part(A), a partition of the locally

controlled (output and internal) actions into equivalence classes; the partition groups together

actions that are to be thought of as under the control of the same underlying process.

An action 7r is said to he enabled in a state s' provided that there is a step of the form

(s', 7rs). An automaton is required to be input enabled, which means that every input action

must be enabled in every state. For any set II C acts(A), we denote by enabled(A.IT) the set

of states of A in which some action in II is enabled, and by disabled(A, Hl) be the set of all

states of A nct in enabled(A, H), that is. disabled(A, H) = states(A) \ enabled(A, II).

An execution of an I/O automaton A is a sequence (finite or infinite) of alternating states

and actions
So, 7r ,Si.+ , , , S, .. .

where so E init(A), and for every i, (si-l,7r,,si) E steps(A). (If the sequence is finite, then it

is required to end with a state.) The schedule of an execution a is the subsequence consisting

of the actions appearing in a and is denoted sched(a). The behavior of an execution a of A is

the subsequence of a consisting of external actions appearing in a and is denoted beh(a). The

schedules and behaviors of A are just those of the executions of A.

Concurrent systems are modeled by compositions of I/O automata, as defined in [LTS7.

LT89]. In order to he composed, automata must be strongly compatible; this means that no

action can be an output of more than one component, that internal actions of one component

are not shared by any other component. and that no action is shared by infinitely many

components. The result of such a composition is another I/O automaton. The hiding operator

can be applied t, reclassify output actions as internal actions.

We now define the kind of mapping we will use to describe correspondences between I/O

automata. The definition we use here is a slight strengthening of the "possibilities mapping"

definition of [LT87, LT89], designed to preserve the entire sequence of actions, internal as well

as external, produced by the automaton.



Definition 2.1 Let A and B be I/0 automata with the same external actions. and ht f be
a marping from states of A to sets of states of B. The mapping f is a strong possibilities
mapping from A to B provided that the following conditions hold:

1. For every start state so of A, there is a start state uo of B such that uo E f(so).

2. If s' is a reachable state of A. u' E f(s') is a reachable state of B. and (s'. r, s) is a step
of A, then there is a step (u',7r,u) of B such that u E f(s).

Lemma 2.1 If there exists a strong possibilities mapping from A to B, then every schedule of
A is also a schedule of B.

Proof: Straightforward.

2.2 Timed Automata

In this subsection, we augment the I/O automaton model to allow discussion of timing as-
sumptions. The treatment here is the same as described in [AtL89] and is a special case of the
definitions proposed earlier in [MMT88]).

A boundmap for an I/O automaton A is a a mapping that associates a closed subinterval
of [0, oo] with each class in part(A), where the lower bound of each interval is not -. and the
upper bound is nonzero. Intuitively, the interval associated with a class C by the boundmap
represents the range of possible lengths of time between successive times when C "gets a
chance" to perform an action. We sometimes use the notation be(C) to denote the lower
bound assigned by boundmap b to class C, and b,,(C) for the corresponding upper bound. A
timed automaton is a pair (A,b), where A is an I/O automaton and b is a boundmap for A.

We require notions of "timed execution", "timed schedule" and "timed behavior" for timed
automata, corresponding to executions, schedules and behaviors for ordinary I/O automata.
These will all include time components. We begin by defining the basic type of sequence that
underlies the definition of a timed execution.

A timed sequence is a (finite or infinite) sequence of alternating states and (action.time)
pairs,

80, ( Ir, t ) s1, (r 2 , t 2 ),.

ending in a state if the sequence is finite. Define to = 0. The times to, tl, ... are required to be
nondecreasing, and if the sequence is infinite then the times are also required to be unbounded.
For any finite timed sequence a define tend(a) to be the time of the last event in a. if 0 contains
any (action,time) pairs, or 0, if a contains no such pairs; also, define sm,,d(a) to be the last
state in a. We denote by ord(a) (the "ordinary" part of a) the sequence

8 , , wth ti. o r,

i.e., a with time. components removed.



Definition 2.2 Suppose (A, b) is a timed auto ato. ihen a timed se-qut nrc 0 Is a timed
execution of (A,b) provided that ord(a) is ar ,x cution of A and ti satisli., the follouing
conditions, for each class C E part(.4) and crry i.

1. Suppose bu(C) < x-. Ifs, E crabld(..C) a d tithtr' i = 0 or.*, & d.._d1d(...'
or 7r, E C. then there (xists j > i uwith t ft + 6,,( . uch that Ctr r ( or

s, E disabled(.4,().

2. If s, E enabled(A. C) and ithe r i = 0 or s, - di.,abld( 1. (') or , ' tho th r
does not exist j > i with tj < !, t b(( ') anl , i C.

The first condition says tht. starting from when an action in C occurs or first gets enabled,
within time b,,(C) either some action in C occurs or there is a point at which no such action
is enabled. Note that if b,,((') = -c, no upper bound requirement is imposed. The second
condition says that, again starting from when an action in ( occurs or first gets enabled, no
action in C can occur before time bf(C) has elapsed.

The timed schedule of a timed execution of a timed automaton (A,b) is the ;ubsequence
consisting of the (actiontime) pairs, and the tintd behavior is the subsequence consisting of the
(action.time) pairs for which the action is external. The timed schedules and timed behaviors of
(.4. b) are just those of the timed executions of (A. b). The following lemma is a straightforward
result of the definition of a timed execution.

Lemma 2.2 Suppose that a is a finite timed execution of a timed automaton (A.b). Then
each locally controlled action of 4 that is enabled in the final state of snd(0) is in a partition
class C in part(A) such that b,(C) = x.

We model each timing-dependent concurrent system as a single timed automaton .4,b).
where .4 is a composition of ordinary 1/0 automata (possibly with some output actions
hidden ).'

We give one more definition here, for use in later prc,,fs. Notice that the definition of a
timed execution contains aspects of both safety and liveness. Sometimes it it useful to focus
on the safety aspects alone. We thus define the notion of a "timed semi-execution" to capture
the safety part ot Li,. -",nition of a timed execution.

Definition 2.3 Suppose (.4.h) z.; a tired automnaton. 7'hen a finite timnd ,sequenc o iq a
timed semi-execution of (.4,b) protided that ord(a) is an execution of A anrid a satisfies the
follow"ig conditions, for, each class C of part( A) and ( v ry i.

'An equivalent way of looking at each system is as a composition of timed auitoinata An approprialV

definition for a (omposition of timed automata is df.veloped in [MM'Fw ]. together with theorems dhowing the
equivalence of the two viewpoints.
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1. Suppose b,(C) < o. If s, E enabled(.4.C) and either i 0 or s E disabled(. .') or

7r, E C, then either tend(O) < t, + b,(C) or there exists j > i with t, < t, + b,(C') sucih
that either 7r, E C or s3 E disabled(A.C').

2. If s, E enabled(A,C) and either i = 0 or s,_1 E disabled(A.') or ,, E C. thcri thtr(-
does not exist j > i with t, < t, + b((') and 7r E C.

This definition is identical to that of a timed execution, except for the (first ) "either" clause
in the first item. This clause allows an action to fail to occur if insufficient time has pa.,sd.

2.3 Timing Conditions

The conditions imposed by a boundmap are appropriate for describing the timing assumptions

of many systems. However, in order to describe the timing requirements that are to be proved

for these systems. it is convenient to generalize these conditions. For example. a bound is ofton

required on the time between two partcular events, e.g., a request and a corresponding grant.

It is convenient to have a notation that permits explicit description of such a condition, without

reference to the underlying partition classes. Therefore, in this subsection, we generalize the

conditions expressed by boundmaps to more general "timing conditions".

Let A be an I/O automaton. A timing condition for A is a tuple of the form (Tstart, Tstp. b. 1. 5),
where:

" Tstant _ start(A) and T.,tep C steps(A), are the triggers.

* b is a closed interval of the form [be, b,], where be i - and b, 7 0,

" H C acts(A), and

" S C states(A) is the disabling set.

We require that a timing condition satisfy the following technical conditions:

1. Tstrt n 5 = 0. and

2. if (s', r,s) E Tt~p then s D.

A timing condition (Ttt T~t,p, b, 11, S) is designed to specify upper and lower bounds on

the time until the next occurrence of an event in the action set fl. measured from certain

points during an execution; the particular bounds are given by the interval b. The trigger

Tjj specifies those start states from which we wish to begin measuring the time, while the

trigger Tfp specifies those steps after which we wish to begin measuring. In both cases,. lhe

numerical bounds are the same.



Primarily because we wish this generalization to include conditions imposed *v boundmaps
as t special case, we must include a way of disabling the bound measurements. (In tile case
of boundmaps. when all the actions in a partition class become disabled simultaneously. tio

bound measurement also becomes disabled.) Thus, the disabling set S is defined to be a set of
states that cause the bound measurement to become suspended. (Conditions 1. and 2. simply
say that the disabling set does not include any states that the triggers designate as states in
which to start the bound measurement.

We sometimes write the timing condition (Ttt, i , H.S) in the form

(7sta T,, ) , (l, S).

A timing condition can be used to specify only a lower bound or only an upper t)ound. by
making the other bound trivial (0 for lower bounds, oo for upper bounds).

Now we define what it means for a timed sequence to satisfy a timing condition. The
definition is closely related to the definition we gave earlier of a. timed execution: we will show
the precise connection in Lemma 2.3.

Definition 2.4 Let a be the tirned sequence so, (ir,, t ), 41 .... Then a satisfies a timing con-
6dition (Taiat, T,iep) ". (II, S) if the following conditions hold:

!. Suppose b, < .

(a) If so E Tstjt then there exists j > 0 with t, < b, such that either 7,- E l or .; E D.

(b) If (s,_1 . 7,, s,) E T,p then there exists j > i with t, K t, + b, such that either 7., E H
or s, E S.

2. (a) If so E '',i, and if there exists j > 0 with tj < b,, such that 7rj E [1, then there
(xists k.0 < k < j, such that sk E S.

(b) If(s,.. 7r, si) E TItp and if there exists j > i with t. < t, + bf such that r, E IT.
then there exists k, i < k < j, such that s, E S.

Let l be a set of timing conditions for an I/O automaton A. \\ say that a timed sequence
0 is a timed execution of (A,14) provided that ord(a) is an execution of .4 and a satisfies every
timilr condition U E U.

To justify this new use ,f the term "timed execution", and as an example of I he use of
lining (onditions, we show how to express the notion of "timed execution" of (A, b) in ternms of
iming conditions. Given an arbitrary timed automaton (A,b), we define the set ?4 of timing

conditions that are associated with b. For oach class C in the partition of A, Ub includes one

timin condition. cond(C) = ( TsFa ( (') . T,,trp((')) (II(('), ((')). defined as follows.

0 Tstart((') = start(A ) n enabhd(A, ('), that is, the set of start states of .4 in which some
action from C' is enabled,



* Tstep(C) is the set of steps (s',7r,s) of A such that s E cnabled(A.C) and either s' E
disabled(A,.C) or 7r E C,

" [1(C) = C, and

" S(C)= disabled(A,C).

Note that this definition satisfies the two requirements for timing conditions.

Lemma 2.3 Suppose (A,b) is a timed automaton. Let a be a timed sequence and suppose that
ord(a) is an execution of A. Then the following two statements are equivalent.

1. o is a timed execution of (A,b).

2. For every class C E part(A), a satisfies the timing condition cond(C).

Proof: Let
O = So,(rj,,t,), ,,1

be a timed sequence such that ord(a) is an execution of A. First assume that a is a timed
execution of (A,b). Let C E part(A); we show that a satisfies cond(C). The upper bound is
a simple substitution. For the lower bound we check only triggering start states, the case of
triggering steps is similar. If so E Ttart(C), then so E enabled(A,C). Assume that 7r3 E C. for
some j > 0. Then from Condition 2. of Definition 2.2 it follows that t > bj(C) , which suffices.

Now assume that a satisfies cond(C) for each C E part(C): we show that a is a timed
execution of (A,b). Again, the upper bound holds easily and the only interesting case to verify
is the lower bound. Assume, by way of contradiction, that for some class C E part(A), there
exits an i > 0, such that si E enabled(A,C) and either i = 0 or st- 1 E disabled(AC) or
7r, E C. and that there exists j > i, such that t1 < t, + be(C) and 7rj E C. Since a satisfies
cond(C), and since S(C) = disabled(A, C), it follows that there is some k. i.< k < j, such
that sk E disabled(A,C). Let k0 be the largest such k. But then (sk,0 ,wr,sk 0 +I) E Tst,(C),
tj < tk,+l + b4C) aid there is no k. ko < k < j such that .Sk, E S(C); this contradicts the
fact that o satisfies cond(C).

Lemma 2.3 implies the following corollary.

Corollary 2.4 Suppose (A,b) is a timed automaton. Then a timed sequence a is a timed
execution of (A, b) if and only if it is a timed execution of (A,14b).

We note that the definition we use for timing condition may not be the most general
condition needed to capture all interesting timing requirements. It does capture many. however:
we will have more to say about this matter in the conclusions section.

9



2.4 Timed Semi-Executions

Recall that the definition of a timed semi-execution of a timed automaton captured the safetv
portion of the timed execution definition. We can also restrict attention to the safety portions
of some of the definitions of the previo,,s subsection, as follows.

Definition 2.5 Let o be the finite timed sequence so, (,1 , tj ). S, . snd. Then a semi-satisfies

a timing condition (Tstart, T3 cp) 'i (H, S) if the following conditions hold:

I. Suppose bu <

(a) If so E Titant then either t~nd(a) : b, or there exists j > 0 with t. ! b. such that
either 7r, E H or sj E S.

(b) If (si_jIri,.s) E Ttep then either t~nd(a) < t, + b, or there exists j > i with
t) _ t, + b, such that either 7r, E H or s, E S.

2. (a) If so E Titaf and if there exists j > 0 with Ij < be such that 7r, E H, then there
exists k,0 < k < j, such that sk E S.

(b) If (si-1,ri,si) E Ttep and if there exists j > i with t, < t, + be such that ir3 E lI,
then there exists k. i < k < j, such that sk E S.

Once again, the only diffeiences between this definition and Definition 2.4 are the --either"
clauses. Now suppose U is a set of timing conditions for an I/0 automaton A. A timed
sequence a is a timed semi-execution of (A,U) if ord(a) is an execution of .4 and for any
timing condition U E U, a semi-satisfies U. Similar res-,lts to those for timed executions hold
for timed semi-executions.

Lemma 2.5 Let (A,b) be a timed automaton. Let a be a timed sequence and suppose that
ord(a) is a prefix of an execution of A. Then the following two statements are equivalent.

1. a is a timed semi-execution of (Ab).

2. For every class C E part(A), a semi-satisfies the timing condition cond(C).

Corollary 2.6 For any I/O automaton .4 and for any boundmap, b. for A., a timed sequenc(
o is a timed semi-execution of (A. b) if and only if it is a timed semi-execution of (A, tb).

Another observation we use later is the following, saying that the limit of a sequence of
timed semi-executions in which the time components are unbounded must be a timed execution.

Lemma 2.7 Let {a, }- be a sequence of timed semi-rccutions of (.A,lU) such that

10



1. for any i > 1, ai is a prefix of ai+i, and

2. lim tend(ai) = '30.

Then there exists a unique infinite timed execution a of (A,U) such that for any I '> 1. c, is
a prefix of a.

Proof. Straightforward. U

3 Incorporating Timing Conditions into I/O Automata

In order to use invariant assertion techniques to reason about timed automata, we define an
ordinary I/0 automaton time(A,U) corresponding to a given timed automaton A with timing
conditions U. This new automaton has the timing restrictions imposed by 1W on A built inlo
its transition rules, based on predictions about when the next event from each set of actions
will occur. In this section, we give the construction of timeiA, U) and also give results relating
the executions and behaviors of time(A,14) to the timed executions and timed behaviors of
(A,U).

A special and important example of this construction is when U is the set of conditions
corresponding to a boundmap for A, i.e., Ub. In this case, we denote the automaton by
time(A, b). 2 In order to provide a concrete example of the construction we present an explicit
description of time(A, b) in Section 3.2. We also give some additional results that can be proved
for time(A, b) because of its special structure. Other special cases of the general construction
will be the requirements automata for the two examples we consider in Sections 4 and 5.

3.1 The General Construction

Given any I/O automaton A and set U of timing conditions for A, we define the ordinary 1/0
automaton time(A,U) as follows. We write each timing condition U E 11 as

(TarU),TfP(U )) b(U) (I(U), S(17)) •

The automaton time(A,U) has actions of the form (r, t), where r is an action of A and t is a
nonnegative real number, with the classification of actions the same as for .4. Each of its states
consists of a state, As, of A (the "A-state"), augmented with a component Ct (the "current
time"), and, for each timing condition U E U, two components Ft(U) and LI(U) (the "first
time" and "last time" for each timing condition). Ct represents the time of the last preceding
event. The Ft(U) and Lt(U) components represent, respectively, the first and last times at
which the timing condition U specifies that an action in IH(U) should occur.

2This automaton was denoted tme(A) in (AtL89].
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We use record notation to denote the various components of the state of time(A.U): for

instance, s.As denotes the state of A included in state s of time(A,l 1). Each initial state of
time(A,U) consists of an initial state s of A, plus Ct = 0, plus values of Ft(U) and Lt(U)
with the following property: if s.As E Tstart(U) then s.Ft(U) = b(U) and s.Lt((') = b (U).

otherwise, s.Ft(U) = 0 and s.Lt(U) = oc. That is, if the start state of A is in the trigger set

of U, then the predicted times are the ones specified in U: otherwise, they are set to default
values.

If (7r,t) is an action of time(A.,), then (s',(r,t).s) is a step of time(A.U) exactly if the

following conditions hold.

1. (s..4s, 7r,s.As) is a step of A.

2. s'.Ct < t = s.Ct.

3. For all U E U, if 7r E II(U), then

(a) s'.Ft(U) < t < s'.Lt( U).

(b) if (s'.As, 7r,s.As) E T.,p(U) then s.Ft(U) = t + be(U) and s.Lt(U) = t + b,(U),

(c) if (s'.As. r,s.As) Ttp(U) then s.Ft(U) = 0 and s.Lt(U) = oc.

4. For all U E U, if 7r H(U), then

(a) t < s'.Lt(U),

(b) if(s'.Asor,s.As) E Tstep(U) then s.Ft(U) t+be(U) and s.Lt(U) = min(s'.Lt(U t+
b,(U), and

(c) if (s'.As,ir,s.As) T.,t,(U) and s.As S 5(U) then s.Ft(U) = s'.Ft(U) and
s.Lt(U) = s'.Lt(U), and

(d) if s.As E S(U) then s.Ft(U) = 0 and s.It(U) = o.

Intuitively, Condition 1. says that the automaton time(A,U4) is correctly simulating the
state transitions of A, and Condition 2. says that Ct components are monotonically nonde-
creasing, i.e., the new time is at least as great as the previous time. Condition 3. deals with

properties involving timing conditions U that include ir in their action sets: Condition 3(a)
says that the time at which the event 7r occurs must be between the bounds specified for U;
Condition 3(b) says thai, i triggering step involving r imposes new time predictions for U,
whereas Condition 3(c) says that a non-triggering step involving 7r does not impose any such

predictions. Condition 4. deals with properties involving timing conditions U that do not in-
clude zr in their action sets: Condition 4(a) says that 7r can only occur if U does not require

any other action to be scheduled first. ('ondition 4 b) says that a triggering step involving 7r

imposes new time predictions for U. Note that in this case, there may already be old predic-
tions in effect for this time condition; the effect of taking the min for the L(U) component
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is to require both the new predictions and any old predictions to be satisfied. Condition
4(c) says that a non-triggering (and non-disabling) step involving 7r does not impose any new
time predictions for U. Condition 4(d) says that a disabling step involving 7r sets the time
predictions for U back to their defaults.

The partition classes for time(A,U) are derived one-for-one from those of A.4

We now relate the timed executions of (A,U) to the executions of the corresponding 1/0
automaton time(A,U). If a is an execution of time(A,U), we define project(a) to be the timed
sequence obtained from a by mapping each occurrence of a state s in a to s.As (while keeping
the (action,time) pairs intact). We first show the following simple correspondence between
semi-executions of (A,U) and finite executions of time(A,U).

Lemma 3.1 1. If a' is a timed semi-execution of (A,U), then there exists an execution a
of time(A,U) such that a' = project(a).

2. If a is a finite execution of time(A,U), then project(a) is a timed semi-execution of
(A,U).

Proof: 1. Suppose that a' is a given timed semi-execution of (A,U). Then there is a
unique timed sequence a whos, states are states of time(A,U), that has a' = project(a),
whose initial state is the unique start state of time(A,U), and each of whose steps satisfies
Conditions 1, 3(b), 3(c), 4(b), 4(c) and 4(d) of the definition of time(A,U), plus the
equality part of Condition 2. of the definition of time(A,U). The fact that a' is a timed
sequence in which, by definition, the time components are non-decreasing, implies the
inequality part of 2. Condition 2. of Definition 2.5 ensures the lower bound part of 3(a)
of the definition of time(A,U), while Condition 3. of Definition 2.5 ensures the upper
bound part of 3(a) and also 4(a) of the definition of time(A,U).

2. By Condition 1. of the definition of time(A,U), ord(project(a) is an execution of the
ordinary I/O automaton A. It remains to show that for every timing condition U E
U, project(a) semi-satisfies U. The initialization and Conditions 3(a) and 4(a) of the
definition of time(A,U) ensure property 1(a) of Definition 2.5. Conditions 3(b), 4(b),
3(a) and 4(a) of the definition of time(A,U) ensure property 1(b) of Definition 2.5. The
initialization and Condition 3(a) of the definition of time(A,U) ensure property 2(a)
of Definition 2.5, while Conditions 3(b), 4(b), 3(a) and 4(a) ensure property 2(b) of
Definition 2.5.

3The min is necessary because in case there is a prior prediction, it will surely be no greater than the new
prediction, so the min will be the first term s'.Lt(U). However, if there is no prior prediction then s'.Lt(U = -c
so the min will be thesecond term t+b,(U). Wecould havesimilarly written s.Ft(U) = max(s'.Ft(U), t-+b(Ufl.
but that is unnecessary because it is always the case that s'.Ft(U) < bt(U).

4It seems that we never need them, however, since the partition classes are used to enforce fairness to the
components of the system; in time(A, U) the timing conditions guarantee that each component gets a fair chance
to operate.
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We give a similar result for infinite sequences:

Lemma 3.2 1. If a' is an infinite timed execution of (A,U), then there exists an infinite
execution a of time(A,U) in which the time components of the actions are unbounded,
such that a' = project(a).

2. If a is an infinite execution of time(A,4) in which the time components of the actions
are unbounded, then project(a) is a timed execution of (A,U).

Proof: 1. By the same reasoning as for part 1. of Lemma 3.1; the time components are
unbounded since a' is an infinite timed sequence.

2. Let a = so, (7r,, tj), s,.... and let ai = So,(7r1 , t) .. , si, for all i > 0. Since ai is a finite
execution of time(A,U), a' = project(ai) is a timed semi-execution of (A,), by part (2)
of Lemma 3.1. Since the time components of the actions in a are unbounded, it follows
that limi-oo ted(a'i) = oc. Lemma 2.7 implies that project(a) is a timed execution of
(A,U).

3.2 Special Case: The Automaton time(A,b)

A very important special case of the construction described in the previous subsection is the
case of time(A,Ub); this automaton is the result of incorporating the boundmap timing condi-
tions of a timed automaton (A,b) into the automaton transitions. As shorthand, we will some-
times refer to this automaton as time(A, b) instead of time(A, Ub), suppressing explicit mention
of the timing conditions Ub. We will also sometimes write Ft(C) instead of Ft(cond(C)) for
partition class C, and similarly for the other state components.

Because the conditions imposed by a boundmap are fundamental and common instances of
timing conditions, and in order to provide an example to illustrate the time(AlU) definition.
we now give an explicit definition of time(A,b), by instantiating the general definition.

Each of the states of time(A,b) consists of As. a state of A, plus Ct, plus, for each class
C of the partition. two times, Ft(C) and Lt(C). Each initial state of time(A) consists of an
initial state s of A, plus CI = 0, plus values of Ft(C) and Lt(C) with the following property:
if there is an action in C enabled in s, then s.Ft(C) = be(C) and s.Lt(C) = bu(C). Otherwise.
.s.Ft(C) = 0 and s.Lt(C) = c.

If (7r, t) is an action of time(A), then (s'. (7r. t), s) is a step of time(A) exactly if the following
conditions hold.

1. (.,'.As. r, s.As) is a step of A.

2. s'.Ct < t = s.Ct.
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3. If r E C, then

(a) s'.Ft(C) <t < s'.Lt(C).

(b) if s.AS E enabled(A,C), then s.Ft(C) - t + bf(C) and s.Lt(C) t + b,(C), and

(c) if s.AS E disabled(A,C), then s.Ft(C) = 0 and s.Lt(C) = oc.

4. For all classes D such that 7r is not in class D,

(a) t < s'.Lt(D),

(b) if s.As E enabled(A,D) and s'.As E disabled(A,D) then s.Ft(D) = t + be(D) and
s.Lt(D) = t + bu(D),

(c) if s.As E enabled(A,D) and s'.As E enabled(A,D) then s.Ft(D) = s'.Ft(D) and
3.Lt(D) = s'.Lt(D), and

(d) if s.As E disabled(A, D) then s.Ft(D) = 0 and s.Lt(D) = oo.

In this special case, it is easy to check that for any class C of the b-_rtition, any reachable
state s in which the Lt(C) and Ft(C) components have non-default values must have s.As E
enabled(A, C). This definition is obtained from the general one by direct application of the

definitions; the only condition that may appear to be slightly different is 4(b), where the general

definition uses a min expression for the new value of Lt(U). However, in the special case, any
reachable state s' in which case 4(b) applies must have s'.As E disabled(A, D); therefore, the
remark above implies that the first term in the min expression always has the value 00. and so
the min expression can be simplified as given.

It is possible to make stronger connections between the executions of time(A,b) and the
timed executions of (A,b) than those we have already described for the general case. To do
this, we require one further definition.

Definition 3.1 The complete executions of time(A,b) are those executions a of time(A,b)

that satisfy one of the following conditions.

1. a is infinite and the time components of the actions in a are unbounded, or

2. a is finite and each locally controlled action of time(A, b) that is enabled in sed(a) is in

a partition class C in part(A) having b,(C) = 00.

The complete schedules and complete behaviors of time(A) are defined to be the schedules and

behaviors, respectively, of complete executions of time(A).

The following technical lemma says that the existence of some enabled action in time(A. b)

(as used in Condition 2. of the above definition) is equivalent to the existence of some enabled

action in A.
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Lemma 3.3 Let (A,b) be a timed automaton. If a is a finite execution of time(A,b), then a
is complete exactly if for every class C E part(time(A, b)),

Sed(a).As E enabled(time(A,b),C) ==* b,,(C) = oo.

Proof. Denote s = sed(a). It suffices to show, that a locally controlled action (7r,t) of
time(A,b) is enabled in s, where 7r E C for some class C with b,(C) < sc, exactly if for some
class C' with b,(C) < so an action 0 E C' is enabled in s.As.

Suppose a locally controlled action (r, t) of time(A,b), where 7r is in a partition class C
with b,(C) < oo, is enabled in s. Then Condition 1. of the definition of time(A, b) immediately
implies that r is enabled in s.As.

Conversely, suppose that a locally controlled action of A in a partition class C' with
b,(C') < co is enabled in s.As; note that in this case the definition of time(A,b) implies
that s.Lt(C') < cs. Let 0 be a locally controlled action of A that is enabled in s.As and
that is in a class C" having the minimal value of s.Lt(C) for any class C. We have that
s.Lt(C") S s.Lt(C') < o; furthermore, it follows from the definition of time(A,b) that for any
class C, if b,(C) = oo then Lt(C) components are always so. Thus it follows that b (C") < 0o.
From Conditions 3(a) and 4(a) in the definition of time(A,b) it follows that (€,t) is enabled
in s, where t = qs.Lt(C"). N

Now we relate the timed executions of a timed automaton (A, b) to the complete executions
of the corresponding I/O automaton time(A,b).

Theorem 3.4 1. If a' is a timed execution of(A, b), then there exists a complete execution
a of time(A,b) such that a' = project(a).

2. If a is a complete execution of time(A, b), then project(a) is a timed execution of(A, b).

Proof: 1. Suppose a' is a timed execution of (A,b). If a' is infinite then Lemma 3.2
implies that there is an infinite execution a of time(A,b) in which the time components
are unbounded, such that a' = project(a). Then a is a complete execution of time(A, b),
as needed. So assume that a' is finite. Then Lemma 3.1 implies that there is a finite
execution a of time(A,b) such that a' = project(a). By Lemma 2.2, every locally con-

trolled action of A that is enabled in the final state of a' is in a partitioi, class with upper
bound equal to o. Then every locally controlled action of time(A, b) that is enabled in

the final state of a is in a partition class with upper bound equal to sc, by Condition 1.
of the definition of time(A,b). Therefore, a is a complete execution, as needed.

2. Suppose that a is a complete execution of time(A, b). If a is infinite then the claim follows
from Lemma 3.2, so suppose that a is finite. Then Lemma 3.1 implies that project(a) is

a timed semi-execution of (A, b); it remains to show the liveness part of the upper bound
condition of Definition 2.2. Lemma 3.3 implies that every locally controlled action of .4
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that is enabled in send(&).As is in a partition class with upper bound equal to x. But
this state is the same as the final state of project(a). Therefore, project(a) satisfies the
liveness part of the upper bound vacuously.

Corollary 3.5 The set of timed behaviors of (A,b) is the same as the set of complete behatiors
of time(A,b).

This theorem implies that properties of timed behaviors of a timed automaton (A. b) can be
proved by proving them about the set of complete behaviors of the corresponding I/O automa-
ton time(A,b). The latter task is more amenable to treatment using assertional techniques.

In each of our examples in this paper, we will apply the time(A,b) construction to a timed
automaton A modeling the entire system.

4 Resource Manager

Now we present our first example, a simple resource-granting system adapted from an algorithm
in [AtL89]. The system consists of two components, a clock and a manager. The clock ticks
at an approximately-predictable rate, and the manager counts ticks in order to decide when
to grant a resource. We wish to analyze the time until the first grant, and the time between
each successive pair of grants.

We describe the algorithm and its timing assumptions as a timed automaton (Ab). The
required timing behavior is presented as a set of timing conditions U; we prove that the
algorithm satisfies the requirements by demonstrating a strong possibilities mapping from

time(A,b) to time(A,U).

4.1 The Algorithm

The algorithm consists of two components, a clock and a manager. The clock has only one
action, the output TICK, which is always enabled, and has no effect on the clock's state. It
can be described as the particular one-state automaton with the following steps.5

TICK

Precondition:
true

'In the notation we use for automata, a separate description is given for the steps involving each action.
Instead of listing the steps, we provide a "precondition" which describes the set of states in which the action
is enabled, and an "effect" which describes the changes caused by the action. Input actions do not have a
precondition, because they are always enabled.
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Effect:
none

The boundmap associates the interval (cl ,c 2], where 0 < cl < c2 < oc, with the single

class. { TICK), of the partition. For convenience, we overload the notation and designate this

singleton class as TICK also. This means that successive TICK events occur with intervening

times in the given interval.

The manager has one input action, TICK, one output action, GRANT and one internal

action. ELSE. The manager waits a particular number k > 0 of clock ticks before issuing each

GRANT. counting from the beginning or from the last preceding GRANT. The manager's

state has one component: TIMER, holding an integer, initially k.

The manager's algorithm is as follows:

TICK
Effect:

TIMER := TIMER -1

GRANT
Precondition:

TIMER < 0
Effect:

TIMER 
:= k

ELSE
Precondition:

TIMER > 0

Effect:
none

Notice that ELSE is enabled exactly when GRANT is not enabled. The effect of including

the ELSE action is to ensure that the automaton continues taking steps at its "own pace", at

approximately regular intervals.

Thus. in the situatw. we are modeling, when the GRANT action's precondition becomes

satisfied. the action does not occur instantly - the action waits until the automaton's next

local step occurs. 6

The partition groups the GRANT and ELSE actions into a single equivalence class LOCAL,

with which the boundmap associates the interval [0,1], where 0 < I < 00. We assume that

'An alternative situation is one in which the manager is interrupt-driven, that is, whenever the precondition

of a GRANT becomes true, the GRANT occurs shortly thereafter. This situation could be modeled by

omitting the ELSE acti-n. The two automata have slightly different timing properties. In this paper, we only

consider the first ass:mption.
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Cl > 1.7 Fix A to be the I/O automaton which is the composition of the clock and manager.
with the TICK output action converted to an internal action; thus, the only external action
of A is the output action GRANT. Also, let b be the boundmap described above. We wish to
show that all the timed behaviors of (A,b) satisfy certain upper and lower bounds on the time
up to the first GRANT and the time between consecutive pairs of GRANT events.

Note that our resource manager is much simpler than the usual examples: in particular.
there is no REQUEST input action that triggers the GRANT output. We do not think that
such added structure would add much to the conceptual difficulty of the example or expose any
interesting property of the methodology we suggest here; however, it would make the analysis
somewhat longer.

We begin our analysis by stating some invariant properties of the algorithm. In order to
do this, we need timing information to be included in the state, so we consider the automaton
time(A, b), constructed as described in Section 3.2. Notice that in this case, the automaton
time(A,b) has the following components, As, Ct, Ft(TICK), Lt(TICK), Ft(LOCAL), and
Ft(LOCAL).

The next lemma states invariant properties of the automaton time(A, b). Notice that the
second property involves the time components of the state. The proof of this lemma is fairly
technical and appears in full detail in Appendix A.

Lemma 4.1 The following are true about any reachable state s of time(A,b).

1. s.TIMER > 0.

2. If s.TIMER = 0 then s.Ft(TICK) _ s.Lt(LOCAL) + cl - I.

We close this subsection with a proof of a basic property of time(A, b) (for this fixed (A, b)).

Lemma 4.2 All complete executions (and therefore all complte schedules) of'time(A,b) are
in finite.

Proof: Suppose by way of contradiction that a is a finite complete execution of time(A,b).
Then by Lemma 3.3, every locally controlled action of A that is enabled in Smd(cf).As is in a
partition class with upper bound equal to oo. But TICK is always enabled and b(TICK)
c2 < oo, which is a contradiction. U

This lemma tells us that for this example we do not have to worry about the case where
executions are finite - we can assume that we have infinite executions in which (because of :he
definition of completeness) the timing component is unbounded.

7Again, a different assumption would change the timing analysis.
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4.2 The Requirements Automaton

We wish to show the following, for any timed behavior ;3 of (A, b):

1. There are infinitely many GRANT events in 3.

2. If t is the time of the first GRANT event in 3. then k • cl < t k • c2 + 1.

3. If tj and t2 are the times of any two consecutive GRANT events in 3. then

k . cl - 1 t2 - ti < k- c2 + 1.

We let P denote the set of sequences of (action,time) pairs satisfying the above three condi-
tions.

By the earlier characterization, Corollary 3.5. it suffices to show that all complete behaviors
of time(A,b) are in P.

We will specify P in terms of another I/O automaton, called the requirements automaton.
We define two timing conditions, G, for the time until the initial GRANT event and G2 for
the time between successive GRANT events. The requirements automaton B is defined to be
time(A, {G 1, G2}).

b(G1)
We now define the conditions. The first condition. G1 , is (Tstart(GI).O) . (I(GO).0).

where

" TSt,t(Gj ) is the (singleton) set of start states of .4.

" bj(G 1 ) = k • cl and b,,(G) = k • C2 + 1, and

" HI(GI)= {GRANT}.

The second condition, G2, is (0, Tstep(G 2 )) b12) (H (("2), 0), where

* T,(G 2 ) = {(s',r.s) E steps(A) :r = GRANT).

* bf.(G 2 ) k . -- I and b,,(G) = k .C 2 +1. and

* HI(G2)= {GRANT}.

Now we prove a lemma that relates the behaviors of B to the condition P. Note that the
behaviors of B and the sequences in P both consist of elements that are pairs, an action of .4
together with a time.

Lemma 4.3 Let 3 be an infinite schedul of tB in which the time componnt zs unbounded.
Then beh(d) is in P,
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Proof: First notice that if a is a timed execution of (A, {G1, G2}) then beh(o) is in P.

Let 3 be an infinite schedule of B = time(A. {G 1 ,G 2}) in which the time component is
unbounded; then 3 = sched(a), where a is an infinite execution of time(A. {G1.G 2}) in which
the time component is unbounded.

Then Lemma 3.2 implies that a' = project(ca) is a timed execution of (A, {G1 , G2}). There-
fore by the remark above, beh(a') E P. But beh(i3) = beh(a) = beh(a'), so beh(3) e P. as
needed. U

Thus, it suffices to show that every complete behavior of time(A. b) is of the form beh(3).
where 2 is an infinite schedule of B in which the time component is unbounded. Now. every
complete behavior of time(A.b) is of the form beh(O), where 43 is a complete schedule of
time(A,b). But every complete schedule of time(A,b) is infinite; moreover, the definition of
completeness for infinite executions implies that the time component of 3 is unbounded. It
suffices to show that 3 is a schedule of B.

Thus, it remains to show that every schedule of time(A,b) is also a schedule of B. But this
is precisely the kind of task that a strong possibilities mapping can be used to carry out; the
complete formal proof appears in the next section.

4.3 The Mapping

In this section, we present a strong possibilities mapping from time(A. b) to B. thereby showing
that all schedules of time(A,b) are also schedules of B. This fact is then used to prove Theorem
4.5, which says that all timed behaviors of (A,b) are in P.

We define a mapping f so that a state u of B is in the image set f(s) exactly if the following
conditions hold.

1. If s.TIMER > 0 then

(a) min(u.Lt(G1 ),u.Lt(G2 )) _ s.Lt(TICK) + (s.TIMER - 1)c2 + 1. and

(b) max(u.Ft(G1 ),u.Ft(G2 )) < s.Ft(TICK) + (s.TIMER - 1)cl.

2. If s.TIMER = 0 then

(a) min(u.Lt(G1 ), u.Lt(G 2 )) > s.Lt(LOCAL), and

(b) max(u.Ft(G1 ),u.Ft(G2 )) < s.Ct.

The inequalities should be interpreted as giving explicit upper and lower bounds for the
time of the next GRANT event, in terms of the values of the variables in the state of ttyinc(A. b).
Intuitively, the right-hand side of the inequality describes how the bounds will be satisfied: for
example, in the case of inequality 1(a), a TICK event must happen within tirue Lt( T1('I 1.
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and then after TIMER - 1 additional ticks, ,ach happer.ing after at most c2 time, TINIER will
become 0. thus enabling the GRANT, which will h.tppen within at most time 1.

If we think of the value of inin(Lt(Gl),Lt(G;2 )) as indicating an upper bound on Ihe time
when a GRANT will next occur, then it should not be surprising that any sufficiently large
number (with respect to the values of tL2 variables in the state of tirne(A)) could be used
as the value of this minimum. This just indicates that aiy such value could be proved t-)
be an upper bound. Similarly. any sufficiently small number could be used as the value for
rnax(Ft(G1 ).Ft(G2 )), a lower bound on the time when a GR.AN'T event will next occur.

Thus, the inequalities comprising the strong possibilities mapping express the fact that any
sufficiently large number (with respect to the values of the variables in the state of tine(A.b))
should be provable as an upper bound for the time for the next GRANT, and any sufficiently
small number should he provable as a lower bound.a

The given mapping is obviously rultivalued, because it is described in terms of imqualities.
It seems possible to use a single-valued mapping for this example by complicating the definition
of the requirements automaton- however, since the requirements automaton is serving as the
problem specification, that does not seem like a good idea. More discussion of the issue of
multivalued vs. single-valued mappings appears in [Ly89].

Although (we think that) the correspondence between tirne(A,b) and B described by f is
easy to understand. verifying formally that f is indeed a strong possibilities mapping is a fairly

long and mechanical process. The complete proof appears in Appendix A.

Lemma 4.4 The mapping f is a strong poss?h1ities mappinq.

Now we can put the pieces together.

Theorem 4.5 .411 timcd ehaviors of (A,b) are in P.

Proof: Let -, bo a timed behavior of (A, b). Then bv Corollary 3.5, -y is a complete bhe;avior of
tio7 1. 1) . Lot .I he a complete schedule of tmif (.4, b such that -1 = beh(3). By Lemma 4.2, 3
is in!i ite. and bv the definition of completeness for infinite executions, the time components of
.3 am, iri, , 'd. Since-, by Lemma -1.4, there is a strong possibilities mapping from time(A, b)
to [3. o,., a n Ii..> is also a schedule of B. Since 3 is an infinite schedule of B in
which the time conipoiti,!. if iiou,,tnded, Lomma 4.3 implies that beh(3) is in P. a

'Note that if we simply replaced th( 'iep , with equations, the resulting mapping would not be a

otrong possibilities mapping For example. sutpoe t)iO a clock tick occurs within less than the maximum c2 .
Then th right-hand side expression in 1(a) would evaluate after the step to an earlie" time than before the
,it,p 1 )n th thor hand the orresponding step in the requireitients automaton would not change the value of

Ltim, ( dtA i. the ,rrfspond,,iic thus would not he preserved



As we promised in the Introduction, our mapping proof has here yielded all the timing
properties we require, including both safety and liveness properties. The mapping immediately
yields the safety properties. (Recall that the safety properties are the lower bounds, as well as
the upper bounds that assert that time cannot elapse without a certain event having occurred.)
But when these safety properties are combined with the property that all complete executions
are infinite and our assumption that the time in infinite timed executions is unbounded (so that
time increases without bound), they also imply that the events in question must eventually
occur.

5 Signal Relay

Now we present our second example, a simple signal relay. The system is a composition of a
collection of n + 1 processes, Po,... ,P, organized as a line. Po generates SIGNALo (once).
and the intermediate processes relay it, so that P, eventually generates SIGNAL,. We wish
to analyze the total delay a signal incurs, as a function of its delay at each of the relaying
processes.

Again, we describe the algorithm and its timing assumptions as a timed automaton (.4, b).
and the required timing behavior au a set of timing conditions U. This time, however, we do
not simply present a direct mapping from time(A,b) to time(A,U) (although we could have).
Rather, we use a sequence of intermediate automata, exhibiting strong possibilities mappings
between each consecutive pair of automata in the sequence. The style of the reasoning involved
corresponds closely to that of a proof based on recurrence inequalities. (In fact, this example
was inspired by the recurrence-inequality proof sketch in [LG89] for the tournament mutual
exclusion algorithm of [PF77]).

5.1 The Algorithm

The algorithm consists of n + 1 automata, PO.... P , where n > 1. PO has one action, the
output SIGNALo. The state of P consists of one component, FLAG, a Boolean value, initially
true.

PO's algorithm is as follows:

SIGNA Lo
Precondition:

FLAG = truc
Effect:

FLAG := false
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The boundmap associates the interval [O.] with the single class, {SIGNALo}. of the
partition. As before, we also designate this class as SIGNALo; we use similar notational
conventions for the remaining singleton classes in the paper.

Each automaton P,, 1 < i < n, has an input action SIGNAL,- 1 and an output action
SIGNAL,. Each automaton state contains the single component FLAG, holding a Boolean
value, initially false.

The algorithm for P, is:

SIGNAL,_
Effect:

FLAG := true

SIGNAL,
Precondition:

FLAG = true

Effect:
FLAG := false

The boundmap associates the interval [di,d 2], where 0 < di :S d2 < o, with the single
class, SIGNALi, of the partition for Pi.

Now we fix A to be the timed automaton which is the composition of all the P,'s, with all
actions except SIGNALo and SIGN.4L, made internal, and b to be the boundmap described
above. We will prove that if a SIGNALo occurs, then the difference between the time it occurs
and the time at which a later SIGNAL, occurs is at least n • d, and at most n . d2.

We first state the following simple invariant about A. The proof is by a simple induction.

Lemma 5.1 In any reachable state s of A, if SIGNALi is enabled in s, then. for all j # i,
0 < j < n, SIGNALJ is not enabled iV. s.

Now- recall that in the previous example, we had the property, expressed in Lemma 4.2. that
all complez.. executions were infinite. This property was very useful in establishing the liveness
part of the upper bour: r7sult, in Theorem 4.5. Unfortunately, in the present example we
do not have this property: the automaton time(A,b) has complete executions that are finite.
(In fact, all of its executions are finite.) Since it seems much more straightforward to use our
proof method when all complete executions are infinite, we find it useful to define a variant
(A'.b) of the timed automaton (A,b), which augments A with a "dummy" component that
always has locally-controlled actions enabled. All of the complete executions of (.4'. b') will be
infinite, and the executions of time(A,b) and tirne(A',b') are very closely related. Thus, we
will be able to reason about (A',b') and obtain consequences for the original timed automaton
(A,b).

2.1



More formally, we augment system A with a single new component called the dummy.
The aummy has a single action, an output NULL (which is not shared by any of the other
components). It has only one state, in which NULL is enabled. The boundmap associates any
interval [ni,n 2] such that 0 < nj _< n2 < oc with the new singleton partition class. NULL. Let

A' be the automaton composed of all the P, and the dummy, with all actions except SIGNALo

and SIGNALn made internal. Also, let b be the boundmap that is identical to b except for
the addition of the new interval [n,, n2] for the new partition class, NULL.

Lemma 5.2 All complete executions (and therefore all complete schedules) of time( A'.b') are
infinite.

Proof: Suppose by way of contradiction that a is a finite complete execution of time(A' , b').
Then by Lemma 3.3, every locally controlled action of A that is enabled in send(a).As is in a
partition class with upper bound equal to oo. But NULL is always enabled and b,,(NULL) =

n2 < oo, which is a contradiction.

Lemma 5.3 Let 3 be a complete schedule of time(A, b). Then there exists a complete schedule
3' of time(A', b') such that 3 can be obtained from3' by removing NULL events.

Proof: Let a be a complete execution of time(A,b) such that /3 = sched(a). We construct
a complete execution a' of time(A',b) by inserting an infinite sequence of NULL events into
a, at times that are separated by some fixed nonzero time increment in the interval [n,. n2 ].

(The state component must also be augmented appropriately.) We then let 3' = sched(o').
We leave to the reader the verification that 3' has the required properties. U

Since the NULL action is internal we have the following corollary.

Corollary 5.4 Let/3 be a complete behavior of time(A,b). Then a is also a complete behavior

of time(A', b'),

5.2 The Requirements Automaton

We wish to show the following, for any timed behavior /3 of (A. b):

1. If SIGNALo event occurs in 3, then a single later SIGNAL, event occurs in 3.

2. If tj is the time of a SIGNALo event and t 2 is the time of the corresponding SIGNAL,

event then:
n "d, :_ t 2 - t l  n .d 2 .
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We let Q denote the set of sequences of (action, time) pairs satisfying the above two conditions.

By Corollary 3.5, it suffices to show that all complete behaviors of time(A,b) are in Q. We
will show that all complete behaviors of time(A',b') are in Q. It will then follow by Corollary
5.4 that all complete behaviors of time(A, b) are in Q.

We now specify Q in terms of a requirements automaton. Towards this end, we define the

following timing condition, Li0,, = (0, To,,) b" (10,,, 0), where

STo, = {(s',7r,s) E steps(A') :r = SIGNALo},

" bo, =[n. d,, n. d2j and

" HIo,= {SIGNAL,}.

The requirements automaton B is tirne(A', {Uo.}).

Lemma 5.5 Let '3 be an infinite schedult of B in which the time component is unbounded.
Then beh($) E Q.

Proof: First notice that if a is a timed execution of (A', {U0,}) then beh(a) is in Q.

Let 3 be an infinite schedule of B = time(A'. {Uo,n}) in which the time component is
,itbounded: then 3 = sched(a), wherc a is an infinite execution of time(A', {U0,}) in which
the time component is unbounded. Then Lemma 3.2 implies that a' = project(a) is a timed
execution of (A', {U0,,}). Therefore by the remark above, beh(a') E Q. But beh(,3) = beh(a)
beh(a'), so beh(3) E Q, as needed.

So again it suffices to show that every complete behavior of time(A',b') is of the form
beh(3), where 3 is an infinite schedule of B in which the time component is unbounded. Now,
every complete behavior of time(A',b') is of the form beh(/3), where 3 is a complete schedule
of time(A',b). But every complete schedule of tin,?(A',b) is infinite, and the definition of
completeness for infinite executions implies that the time component of 3 is unbounded. It
remains to show that 3 is a schedule of B.

Thiis. 't is en-,j ' show that every schedule of time(A',b') is also a schedule of B; this
is done in the following s,:bsecuins.

5.3 The Intermediate Requirements Automata

One way of proceeding would be to exhibit a strong possibilities mapping directly from
tine( A'. b') to B. following the pattern of the first example. However, an alternative and
attractive strategy might be based on the recursive structure of the tine of processes. For
instance, one might give a recursive analysis of the time between any SIGNALk.O .< k _ n -2
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and SIGNAL, in terms of the time between SIGNALk+I and SIGNAL,. Thus, the analysis
would be based on recurrence inequalities. Several examples of such recurrence inequality anal-
yses (for upper bounds only) appear in [LG89]; the analysis of the Peterson-Fischer ([PF77])
tournament algorithm in [LG89, p. 26-30] is a particularly good example of this proof style.

Recurrence inequality proofs, however, have an "operational" style that is very different
from the assertional style we are describing here. We would like to be able to utilize the power
of the recurrence analysis within our assertional framework. In order to do this, instead of
proceeding to show directly that every schedule of time(A', b') is a schedule of B by a strong
possibilities mapping, we proceed using a hierarchy of intermediate requirements automata.
Each intermediate requirements automaton, Bk, includes the same timing conditions as are
gi:en by che boundmap b, for partition classes SIGNALo, . .SIGNALk, plus a new timing
condition that provides bounds on the time between SIGNALk and a subsequent SIGNAL,.
The recursive argument described above, expressing the time between SIGNALk and SIGNAL,
in terms of the time between SIGNALk+l and SIGNAL,, is then captured formally by a strong
possibilities mapping from Bk to Bk+1.

In this subsection, we define the intermediate automata.

First, for every k, 0 < k < n - 1, we define a timing condition stating that the time between
SIGNALk and SIGNAL, (if SIGNALk occurs) is in the interval [(n - k)dl, (n - k)d 2]. (In
particular, the condition will imply that each SIGNALk is actually followed by a corresponding
SIGNALn). When k = n - 1, this condition will be the same as the timing condition assigned
by the boundmap b' to the class containing SIGNAL,,. On the other hand, when k = 0, this
condition is the same as the condition U0,n previously defined, i.e., the timing condition we
wish to prove.

Formally, for any 0 :_ k < n - 1,9 we define the following timing condition, Uk,, =

(0,Tk,n) (ilk,n, 0 ), where

" Tkn {(s',7r,s) E steps(A') : r = SIGNALk},

" bk,n= [(n- k).di,(n - k). d2], and

* Ik,n = {SIGNALn}.

For any k,0 < k < n - 1, let Uk be the set of timing conditions that includes Uk, and
the conditions assigned by boundmap b' to the partition classes SIGNALo, ..., SIGNALk and
NULL. Let Bk denote the I/O automaton time(A',Uk).

In the next subsection, we will show the existence of a strong possibilities mapping from
Bk to Bk-1, for every k, I < k < n - 1. This implies that there is a strong possibilities
mapping from Bn- 1 to B0 . Moreover, there is a trivial strong possibilities mapping from
B 0 to the requirements automaton B (which just ignores the timing conditions associated

'The redefinition of Uo,, is consistent with the prior definition.
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by b with the partition classes SIGNALo and NULL). Similarly, there is a trivial strong
possibilities mapping from time(A',b') to Bn-1 (which simply renames the state components
associated with SIGNAL,). Therefore, this mapping proof will imply the existence of a strong
possibilities mapping from timne(A',b) to B.

5.4 The Mapping

In this subsection, we fix a particular value of k, 1 < k < n - 1, and show the existence of a
strong possibilities mapping, fk, from Bk to Bk-1.

Recall that the timing conditions included in Bk are those for Uk,,, SIGNALo, ..., SIGNALk
and NULL, whilc thcse included in Bk-1 are those for Uk-i,,, SGNA LU, ...,SiGNALkI and
NULL, For the sake of convenience we denote by Ft(k, n) (respectively, Lt(k, n)) the Ft (re-
spectively, Lt) component of the state of Bk that is associated with Uk,,. Also, as we did in
our construction of time(A, b), we denote by Ft(C) (respectively, Lt(C)) the Ft (respectively,
Lt) components that are associated by the boundmap b' with each partition class C. We also
use the notation FLAGi, 0 < i < n, to denote the FLAG component of Pi.

Now we define fk so that a state u E states(Bk_ 1) is in the image set fk(s), for 3 E
states(Bk), exactly if the following hold.

fs.Lt(k,n) if s.FLAG, = true
for somei, k +1 << n

u.Lt(k - 1,n) s.Lt(SIGNALk) + (n - k)d2 if s.FLAGk = true

1 0k otherwise,
and

Ss.Ft(k, n) if s.FLAGi = true
for some i,k + < i < n

u.Ft(k-1,s.Ft(SIGNAL)4(n-k)dl if s.FLAGk = true
L0 otherwise.

and every other component of state u of Bk-1 is equal to the corr-sponding component of
the state s; notice that by Lemma 5.1 if FLAGk = true then FLAG = false for all i $ k,
0 < i y n, thus the mapping is well defined.

Intuitively, the inequalities give upper and lower bounds for the time of the next SIGNAL,
event, in terms of the values of the variables in the state of time(A', b'). For example, in the case
of the upper bound, if the signal has already propagated past process Pk, then within the time
that is stored in s.Lt(k, n), a SIGNAL, event must occur (because the component s.Lt(k, n)
keeps track of the latest time at which a SIGNAL, event must occur, once a SIGNAL, event
has occurred). If the signal has only gotten as far as process Pk, however, then s.Lt(k,n)
will not contain any useful information, so an alternative bound is used. In this case, within
time s.Lt(SIGNALk), a SIGNALk event must occur, and then after (n - k) additional signal
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propagation steps, each taking at most time d2, a SIGNAL, event must occur. The lower
bound has a similar meaning.

The proof of the following lemma is a straightforward case analysis and it appears in
Appendix A.

Lemma 5.6 If 1 < k < n - 1 then the mapping fk is a strong possibilities mapping from Bk

to Bk- .

By considering the composition fl o ... o fn-1 and the trivial mappings from B0 to B and
from time(A', b') to B,- 1 , we obtain the following corollary.

Corollary 5.7 There exists a strong possibilities mapping from time(A', b') to B.

Now we can put the pieces together.

Theorem 5.8 All timed behaviors of (A,b) are in Q.

Proof: Let -y be a timed behavior of (A,b). Then by Corollary 3.5, -y is a complete behavior
of time(A,b). Thus, Corollary 5.4 implies that -y is a complete behavior of time(A',b'). Let
,3 be a complete schedule of time(A',b') such that -y = beh(O). By Lemma 5.2, /3 is infinite.
and by the definition of completeness for infinite executions, the time components of 4 are
unbounded. Since by Corollary 5.7 there is a strong possibilities mapping from time(A', b') to
B, Lemma 2.1 implies that 3 is also a schedule of B. Since / is an infinite schedule of B in
which the time components axe unbounded, Lemma 5.5 implies that beh(/) = y is in Q. a

6 Conclusions and Further Work

In this paper we have described a way to carry out assertional proofs for timing properties. We
have shown how to specify an algorithm and its timing assumptions, as well as its performance
requirements, in terms of timed automata and timing conditions. We have shown how to
convert such specifications into ordinary (not timed) I/O automata by building predictive
timing information into the automaton states. Then the goal of proving timing conditions
can often be met by demonstrating the existence of a strong possibilities mapping from the
automaton corresponding to the algorithm (with its timing assumptions) to the automaton
corresponding to the performance requirements.

We have presented two examples of this method. The first is the analysis of the rate at which
a simple resource manager system issues grants; the second is the analysis of the propagation
delay of a signal along a line of relay processes. The second example also illustrates how our
method can be applied hierarchically, in a way that corresponds to proofs using recurrences.
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A good technique for proving timing properties of timing-dependent or asynchronous sys-

tems should be rigorous, simple and general. Our technique is certainly rigorous, and we think
it is also quite simple. Prior work on proving timing properties has usually had an operational

style much like that of liveness proofs, where time bounds are obtained by bounding how long

it takes for intermediate milestones to occur. (See [LG89] for several examples.) In contrast.

the method presented in this paper has an assertional style. Such a style seems to us to lead

to proofs that are somewhat simpler; they are straightforward to generate (although they may

involve analyzing a large number of cases), and are easier to check - in fact, proofs of the sort

we have given in this paper ought to be machine-checkable with current proof technology.

As for generality, it is not yet clear Lo us how generally applicable this method will be.

It is quite likely that the specific time(A,U) construction we use will not be general enough

to express ,11 Interesting examples of nerformance requirements. For example, one might

want to consider performance re,,ire'- nts that specify that a resource manager is supposed

to respond to requests as long as they do not arrive too far apart in time (see the "cement

mixer" example in [FG891). For another example, one might want to consider a specification

that says that one event 7r triggers two later events, 0 and 0, with 0 occurring within a

certain interval of time after 7r and v occurring within a certain interval of time after 0. Both

of these examples illustrate more complicated requirements than can be expressed directly

as timing conditions. It may be possible to force such examples to fit into our definitions

by adding auxiliary variables or actions: alternatively, it may be necessary or desirable to

generalize the time(AU) construction to allow more general kinds of timing conditions. If

the timc(A,U) construction is generalized, then we would hope that many of the same ideas.

e.g.. the incorporation of predictive timing information into the state and the use of mappings

that take the form of inequalities, will still be useful. Even if the time(AU) construction is

generalized, we wonder whether there is a single generalization that will cover all interesting

examples. We leave all of this as a subject for future work.

Even for the specific case of mappings between automata of the form time(A,ld), we do

not yet know if our proof method using inequalities is complete. That is, if every schedule

of time(A,Ul) is also a schedule of time(A, U 2 ) then is there necessarily a strong possibilities

mapping (in the form of inequalities) from time(A.Ul) to time(AU 2 )? Such completeness

results for the usage of refinement mappings to prove properties of non timing-based algorithms

appear in [AbL88] and [M89].

It rrt11:,v , app, i, technique to other, more complex examples than the ones in this

paper. One particularly good exmiple to try is the full tournament mutual exclusion algorithm

from [PF77]. Its prior analysis using recurrences suggests that it may be a good candidate for

hierarchical proof as in our second example. This is an example of an asynchronous algorithm;

good sources for timing-dependent algorithms to analyze are the areas of real-time computing

and communication.

We have alr~ady seen how our method can express ideas previously expressed using recur-

rences. It remains to see how our technique combines with other methods for time analysis

such as methods based on bounded temporal logic (e.g., [BH81). Also, it remains to see how
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proofs using our techniques can be applied in a modular way for the verification of timing
properties of large and complex timing-based systems.
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A Proofs of Lemmas

A.1 Proof of Lemma 4.1

Proof: By induction on the length of an execution leading to s. If the length = 0, then
s.TIMER = k > 0, so the conditions are easily seen to be true. So suppose that (s',(7r.t),sq)
is a step of time(A, b), where s' is reachable in n steps and the conditions are true for s'. We
consider cases.

Case 1: 7r = GRANT.

Then the effect of GRANT implies that s.TIMER = k > 0, which implies both conditions.

Case 2: 7r = ELSE.
The precondition of ELSE implies that s'.TIMER > 0. Since s.TIMER = s'.TIMER, we
also have s.TIMER > 0, which implies both conditions.

Case 3: 7r = TICK.

Suppose that s.TIMER < 0, Then s'.TIMER = 0, by the inductive hypothesis. The induc-
tive hypothesis also implies that s'.Ft(TICK) ? s'.Lt(LOCAL) + cl - 1. Since cl > I (by an
assumption), this implies that s'.Ft(TICK) > s'.Lt( LOCAL). But then TICK is not enabled
in s', a contradiction. Thus, s.TIMER > 0. showing the first property.

Now, s 't( fICK) = t + cl and s.Lt(LOCAL) !_ t + 1. This implies that

s.Ft(TICK) > s.Lt(LOCAL)+ cl - 1,

,howing the second property.

A.2 Proof of Lemma 4.4

Proof: We begin by giving an explicit description of B, by instantiating the geperal definition
of tinze(A,U) for the case where U is the given set of conditions. We use this explicit description

in the proof below.

Each state of B has components As, holding a state of A, plus Ct, Ft(G1 ), Lt(G 1 ), Ft(G2 )
and Lt(G,). Each initial state of B consists of an initial state s of A, plus Ct = 0, plus

Ft(G1 ) = k .ci, Lt(Gi) = k .- 2 +1, Ft(G2 ) = 0 and Lt(G2 ) = 00. If (r,t) is an action of B,

then (s', (r, t), s) is a step of B exactly if the following conditions hold.

1. (s'.As, r,s.AS) is a step of A.

2. .'.(Ct < t = s.Ct.

3. If 7r = GRANT then

(a) s'.Ft(GI) < t < s'.Lt(Gi) and s'.Ft(G2 ) < t < s'.Lt(G2 ),
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(b) .s.Ft(G2 ) = t + k -. - 1 and s.Lt(G2 ) = t + k -c2 + 1,

(c) s.Ft(GI) = 0 and s.Lt(G2 ) = 00.

4. If 7r = ELSE or TICK, then

(a) t < s'.Lt(G1 ) and t < s'.Lt(GA)

(b) s.Ft(GI) = s'.Ft(GI), s.Lt(GI) = s'.Lt(GI), s.Ft(G2 ) = s'.Ft(G2 ),and s.Lt(G 2 )=
S'.Lt(G2).

Let s and u be the unique start states of time(A,b) and B, respectively. Then .s.TIAIER=
k > 0. Also,

min(u. Lt(GI), u.Lt(G2 )) = k -C2 + I and s. Lt(TICK) =C2.-

It follows that

min(u.Lt(GI), u.Lt(G2 )) = s.Lt(TICK) + (s.TIMER - lOC2 + 1

Furthermore,
max(u.Ft(G1j), u.Ft(G2)) = k -cl and s.Ft(TICK) = l

so that
max(u.Fi(Gj), u.Ft(G2 )) = s.Ft(TICK) + (s.TIMER - 1)cl.

This suffices to show the initial condition.

Now consider a step (s', (7r, t), s) of time(A, b), where s' is a reachable state of tirne(.4.b).
and suppose that u' is a reachable state of B such that u' E f (s'). We argue that .t) is
enabled in u'. The first thing we must show is that

t < min(u'.Lt(G1j), u'.Lt(G2 )).

If this is not the case, then
t > min(u'.Lt(G1j), u.Lt(G2 )).

Since s' is a reachable state of time(A, b), Lemma 4.1 implies that s'.TIMER > 0. Then since
u' E f(s'), it follows that either

min(u'.Lt(GI), u'.Lt(G2)) ! s'.Lt(TICK)

or rnin(u'.Lt(G1 ),tt'.Lt(G2 )) ! s'.Lt(LOCAL).

Therefore, either
t > s'.Lt(TICK) or t > s'.Lt(LOCAL).

Either case contradicts the operation of time(A, b).

The other thing we must show is that if ~r = GRANT, then

max(u'.Ft(GI), u'.Ft(G2 )) <
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Since (GRANT,t) is enabled in S', it must be that s'.TIMER < 0, and Lemma 4.1 then

implies that s'.TIMER = 0. Since u' E f(s'), we have

max(u'.Ft(Gj),u'.Ft(G2 )) < s'.Ct .

This means that
max(u'.Ft(GI),u'.Ft(G2)) S s'.Ct < s.Ct t,

as needed.

Now we consider cases.

Case 1: ir = GRANT. Then define u so that

u.Ft(Gi) = 0,

u.Lt(Gi) =o,

u.Ft(G2 ) = t + k .cl - I and

u.Lt(G2 ) = t + k c2 + I.

(Other components are exactly as in s.) The preconditions already checked imply that (u', (ir, t), L)

is a step of B. It remains to show that u E f(s). The effects of the GRANT action imply that

s.TIMER = k > 0. Thus, we must show that

min(u.Lt(G1 ), u.Lt(G2 )) >_ .s.Lt(TICK) + (s.TIMER - 1)c2 + 1

and
max(u.Ft(GI), u.Ft(G2 )) K_ s.Ft(TICK) + (s.TIMER - 1)cj.

To see the first inequality, note that

s.Lt(TICK) !_ t + c 2 ;

thus.

s.Lt(TICK) + (s.TIMER - 1)c2 +

t+c 2 +(k- 1)c 2 +l

= t+k.c2 +l,

which shows the first inequality.

To see the second inequality, note that max(u.Ft(G1 ),u.Ft(G2 )) t + k c - 1. The

definition of time(A,b) implies that

s.Ct < s'.Lt(LOCAL).
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Lemma 4.1 implies that

s'.Ft(TICK) > s'.Lt(LOCAL) + cl - 1.

Therefore,

s.Ft(TICK) + (s.TIMER - 1)cl s'.Ft(TICK) + (s.TIMER - 1)cj
> s'.Lt(LOCAL) + cl - I + (s.TIMER - 1)cj

> t + cl - 1 + (s.TIMER - 1)cl
t+k.cl -l,

which implies the second inequality.

Case 2: ir = ELSE. Then define u so that

u.Ft(GI) = u'.Ft(Gi),

u.Lt(Gi) = u'.Lt(GI),

u.Ft(G2 ) = u'.Ft(G2 ), and

u.Lt(G2 ) = u'.Lt(G2 ).

(Other components are exactly as in s.) The preconditions already checked imply that (u', (7r. t), u)
is a step of B. It remains to show that u E f(s). Since (ELSE, t) is enabled in time(Ab), we
have s'.TIMER > 0. Since s.TIMER = s'.TIMER, we also have s.TIMER > 0. Thus, we

must show that

min(u.Lt(GI), u.Lt(G2 )) _ s.Lt(TICK) + (s.TIMER - 1)c 2 + l,

and
max(u.Ft(Gi),u.Ft(G2 )) <_ s.Ft(TICK) + (s.TIMER- 1)cl.

To see the first inequality, note that the inductive hypothesis implies that

min(u'.Lt(Gi), u'.Lt(G2 )) s'.Lt(TICK) + (s'.TIMER - 1)c2 + 1.

But
min(u.Lt(Gj), u.Lt(G2 )) = min(u'.Lt(G1 ), u'.Lt(G2 )),

and

s.Lt(TICK) = s'.Lt(TICK).

Therefore, the first inequality holds.

To see the second inequality, note that the inductive hypothesis implies that

max(u'.Ft(G1),u'.Ft(G2 )) s'.Ft(TICK) + (s'.TIMER - 1)cl.
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But
max(u.Ft(GI), u.Ft(G2 )) = max(u'.Ft(G1 ), u'.Ft(G2)),

and
s.Ft(TICK) = s'.Ft(TICK).

Therefore, the second inequality holds.

Case 3: 7r = TICK. Then define u so that

u.Ft(G1 ) u'.Ft(GI),

u.Lt(GI) u'.Lt(Gi),

u.Ft(G2) = u'.Ft(G2 ), and

u.Lt(G2) = u'.Lt(G2 ).

(Other components are exactly as in s.) The preconditions already checked imply that (u', (ir, t), u)
is a step of B. It remains to show that u E f(s). Note that s.TIMER = s'.TIMER - 1.
There are two subcases to consider.

1. s.TIMER > 0.

Then we must show that

min(u.Lt(GI),u.Lt(G2 )) ! s.Lt(TICK) + (s.TIMER - 1)c2 + 1,

and
max(u.Ft(GI), u.Ft(G2)) < s.Ft(TICK) + (s.TIMER - 1)ci.

To see the first inequality, note that the inductive hypothesis implies that

min(u'.Lt(GI), u'.Lt(G2)) 2 s'.Lt(TICK) + (s'.TIMER - 1)c2 + 1.

But
min(u.Lt(Gi), u.Lt(G2)) = min(u'.Lt(GI), u'.Lt(G2)),

s.Lt(TICK) = t + C2 ,

and

t < s'.Lt(TICK).

Therefore, we have

min(u.Lt(G), u.Lt(G2 )) = min(u'.Lt(G1 ), u'.Lt(G 2))
> s'.Lt(TICK) + (s'.TIMER - 1)c2 + I

= s'.Lt(TICK) + ((s.TIMER + 1) - 1)c2 + I

= c2 + s'.Lt(TICK) + (s.TIMER - 1)C2 + 1

= s.Lt(TICK) - t + s'.Lt(TICK) + (s.TIMER - 1)c2 + I.
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Since the definition of time(A,b) implies that

s'.Lt(TICK) >_ t,

the first inequality follows.

To see the second inequality, note that the inductive hypothesis implies that

max(u'.Ft(GI), u'.Ft(G2)) s'.Ft(TICK) + (s'.TIMER - 1)cj.

But
max(u.Ft(Gj ), u.Ft(G2 )) = max(u'.Ft(Gj ), u'.Ft(G2 )),

and
s.Ft(TICK) = t + ci.

Furthermore, by the definition of time(A,b),

t > s'.Ft(TICK).

Hence,

max(u.Ft(G1 ),u.Ft(G2)) = max(u'.Ft(GI),u'.Ft(G2 ))
< s'.Ft(TICK) + (s'.TIMER - 1)cl

= '.Ft(TICK) + ((s.TIMER+ 1) - 1)cl

= cl + s'.Ft(TICK) + (s.TIMER - 1)cl

< c1 + t + (s.TIMER - 1)cl
= s.Ft(TICK) + (s.TIMER- 1)cl,

as needed.

2. s.TIMER = 0.

Then we must show that

min(u.Lt(Gi),u.Lt(G2 )) >_ s.Lt(LOCAL)

and
max(u.Ft(Gj),u.Ft(G2 )) <_ .Ct.

Note that s'.TIMER = 1.

To see the first claim, note that s'.TIMER > 0, so the inductive hypothesis implies that

min(u'.Lt(GI),u'.Lt(G2)) > s'.Lt(TICK) + (s'.TIMER - 1)c2 + I

Ss8'.Lt(TICK) + 1
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Furthermore, note that the definition of time(A, b) implies that

t < s'.Lt(TICK).

Hence

min(u.Lt(G:),u.Lt(G2 )) = min(u'.Lt(G1 ), u'.Lt(G2 ))

> s'.Lt(TICK) + 1.

> s'.Ct + 1

>_ s.Lt(LOCAL),

which shows the first claim.

To see the second claim, note that s'.TIMER > 0, so the inductive hypothesis implies

that

max(u'.Ft(Gj),u'.Ft(G2 )) !5 s'.Ft(TICK) + (s'.TIMER- 1)cj

= s'.Ft(TICK).

Now, s'.Ft(TICK) < t, so that

max(u'.Ft(Gj),u'.Ft(G2 )) < t.

But

max(u.Ft(Gj),u.Ft(G2 )) = max(u'.Ft(G1 ),u'.Ft(G2 ))

< t = s.Ct,

as needed.

A.3 Proof of Lemma 5.6

Proof: We begin by giving an explicit description of Bk, by instantiating the general defini-

tion of time(A,U) for the case where U = Uk. We use this explicit description in tle proof

below.

Each state of Bk has component As, holding a state of A', plus Ct, Ft(k, n), Lt(k, n),

Ft(SIGNALi) and Lt(SIGNAL1 ), for every i, 0 < i < k, Ft(NULL) and Lt(NULL). Each initial

state of Bk consists of an initial state s of A', plus Ct = 0, Ft(NULL) = nj, Lt(NULL) = n2,

all other Ft components equal to 0, and all other Lt components equal to oo. If (7r, t) is an

action of Bk, then (s', (7r, t), s) is a step of Bk exactly if the following conditions hold.

1. (s'.As, r, s.As) is a step of A.
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2. s'.Ct < t = s.Ct.

3. t < s'.Lt(k,n), t < s'.Lt(SIGNALi) for all i,O < i < k, and t < s'.Lt(NULL).

4. If r = SIGNALi, for 0 < i < k - 1, then

(a) s'.Ft(SIGNALi) _ t,

(b) s.Ft(SIGNALi) = 0 and s.Lt(SIGNALi) = 00,

(c) s.Ft(SIGNALj+1 ) = t + d, and s.Lt(SIGNAL,+1 ) = t + d2, and

(d) s.Ft(k,n) = s'.Ft(kn), s.Lt(kn) = s'.Lt(k.n). and s.Ft(C) = s'.Ft(C) and
s.Lt(C) = s'.Lt(C) for all partition classes C {SIGNALs.SIGNALi+j1 .

5. If ir = SIGNALk, then

(a) s'.Ft(SIGNALk) < t,

(b) s.Ft(SIGNALk) = 0 and s.Lt(SIGNALk) = 00,

(c) s.Ft(k,n) = t + (n - k) .di and s.Lt(k,n) = t + (n - k) . d2, and

(d) s.Ft(C) = s'.Ft(C) and s.Lt(C) = s'.Lt(C) for all partition classes C $ SIGNALk.

6. If 7r = SIGNALi, for k + 1 < i < n - 1, then

(a) s.Ft(k,n) = s'.Ft(k,n), s.Lt(k,n) = s'.Lt(k,n), and s.Ft(C) = s'.Ft(C) and
s.Lt(C) = s'.Lt(C) for all partition classes C.

7. If r = SIGNAL,, then

(a) s'.Ft(k, n) < t,

(b) s.Ft(k, n) = 0 and s.Lt(k, n) = 00.

(c) s.Ft(C) = s'.Ft(C) and s.Lt(C) = s'.Lt(C) for all partition classes C.

8. If 7r = NULL then

(a) s'.Ft(NULL) < t,

(b) s.Ft(NULL) = ni and s.Lt(NULL) = n 2, and

(c) s.Ft(k,n) = s'.Ft(k,n), s.Lt(k,n) = s'.Lt(k,n), and s.Ft(C) = s'.Ft(C) and
s.Lt(C) = s'.Lt(C) for all partition classes C 54 NULL.

The description of Bk- is similar, but with k - 1 replacing k. We now present the proof
of Lemma 5.6. Let s and u be the unique start states of Bk and Bk-1, respectively. Then
u.Lt(k - 1, n) = 00 and u.Ft(k - 1,n) = 0, so the inequalities clearly hold, implying that
u E fk(s).

Now consider a step (s',(7r, t), s) of Bk, where s' is a reachable state of Bk, and suppose
that u' is a reachable state of Bk-1 such that u' E fk(s'). We first argue that (7r,t) is enabled
in u'.
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There are two key facts that we must show. The first is that

t < u'.Lt(k - 1, n).

The inductive hypothesis implies that:

s'.Lt(k, n) if s'.FLAGi = true
L t (k 1, n) !for some i,k+ 1< I < n

u'.Lt(k - 1,n) s'.Lt(SIGNALk) + (n - k)d 2 if s'.FLAGk = true

00 otherwise,

First suppose that u'.Lt(k- l, n) >_ s'.Lt(k, n); then since (ir,t) is enabled in s', it must be that
t < s'.Lt(k,n). Thus, t < u'.Lt(k - 1, n) in this case. Second, suppose that u'.Lt(k - 1, n) >
s'.Lt(SIGNALk) + (n - k)d 2 2! s'.Lt(SIGNALk). Since (r, t) is enabled in s', it must be that
t < s'.Lt(SIGNALk). Therefore, t < u'.Lt(k - 1, n) in this case. The only remaining case is
that u'.Lt(k - 1, n) = oo, in which -2-e the condition clearly holds.

The second key fact to show is that if ir = SIGNALn, then

t > u'.Ft(k - 1,n).

So suppose that r" = SIGNALn. Since ir is enabled in s', it must be that s'.FLAG, = true.
Since u' E fk(s'), s'.FLAGk = true, and k < n, the definition of fk implies that

u'.Ft(k - 1, n) < s'.Ft(k, n)

But t > s'.Ft(k,n) since (r, t) is enabled in s'. Therefore, t > u'.Ft(k - 1,n), as needed.

Thus, (7r, t) is enabled in u'. To complete the proof, we must show that (for s'. u' and
7r as described above) there exists a state u of Bk-I such that (u', (r,t), u) is a step of Bk-I
and u E fk(s). We define u to be the unique state defined by u.As = s.As and Ft and Lt
components as implied by the constr'iction of Bk-, such that (u',(i-,t),u) is a step of Bk 1 ;
it remains to show that u E fk(s). We consider cases.

Case 1: ir = SIGNALi, for 0 < i < k - 2.

Then u.Ft(k - 1, n) = 0 and u.Lt(k - 1, n) = oo, which immediately imply the inequalities.
Also, since u.Ft(SIGNAL,) = s.Ft(SIGNALi) = 0 and u.Lt(SIGNALi) = s.Lt(SIGNAL,) =
o, and all components of u' other than u'.Ft(k - 1,n) and u'.Lt(k - 1,n) have the same
value as the corresponding components of s', it follows that all components of u other than
u.Ft(k - 1, n) and u.Lt(k - 1, n) have the same value as the corresponding components of s.
Therefore. u E fk(s).

Case 2: r = SIGNALk. 1 .

Then

u.Lt(k - 1, n) = t + (n - (k - 1))d 2 = t + (n - k + 1)d2,
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u.Ft(k-1,n) = t+(n-(k-1))dl =t+(n-k+l)dj,

s.Lt(SIGNALk) = t + d2 ,

s.Ft(SIGNALk) = t+dl,

and s.FLAGk = true.

Thus we have

u.Lt(k - 1, n) = t + (n - k + 1)d 2 = t + d2 + (n - k)d 2 = s.Lt(SIGNALk) + (n - k)d 2

and

u.Ft(k - 1,n) = t + (n - k + 1)dl = t + d, + (n - k)dl = s.Ft(SIGNALk) + (ti - k)dl.

This implies the inequalities. The equivalence of corresponding components of u and s is
straightforward, as in Case 1.

Case 3: 7r = SIGNALk.

Then

u.Lt(k - 1,n) = u'.Lt(k- 1,n),

u.Ft(k - l,n) = u'.Ft(k- 1,n),

s.Lt(k,n) = t + (n - k)d2,

s.Ft(k,n) = t + (n - k)dl,

S'.FLAGk = true,

and s.FLAGk+l = true.

Since s.FLAGk+l = true, the inequalities we need to show are:

u.Lt(k - 1,n) > s.Lt(k,n) and u.Ft(k - 1, n) !_ s.Ft(k,n).

For the upper bound,

u.Lt(k - 1,n) = u'.Lt(k - 1, n)

> s'.Lt(SIGNALk) + (n -- k)d 2

since u' E fk(s') and s'.FLAGk = true,

> t + (n- k)d 2

since t < s'.Lt(SIGNALk) by the fact

that (7r, t) is enabled in s' ,

= s.Lt(k,n).
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For the lower bound we get, using similar reasoning,

u.Ft(k - 1,n) = u'.Ft(k - 1,n)
< s'.Ft(SIGNALk) + (n - k)dl

< t+(n-k)dl

- s.Ft(k, n).

The equivalence of corresponding components of u and s is again straightforward.

Case 4: r = SIGNALi, for k + 1 <i < n - 1.

This step does not change any Ft or Lt component of either Bk or Bk-l. Thus, the
inequalities and equivalences are all preserved.

Case 5: r = SIGNAL,.

Then u.Lt(k - 1,n) = oo and u.Ft(k - 1,n) = 0, so that the inequalities are immediate;
the equivalences are again straightforward.

Case 6: r = NULL.

This step does not change any of the Ft or Lt components involved in the inequalities, so
that the inequalities are preserved. Since the only changes to Ft and Lt components made by
this step are to set u.Ft(NULL) z- s.Ft(NULL) = t + ni and u.Lt(NULL) = s.Lt(NULL) =

t + n 2, the equivalences are again straightforward. U
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